The Construction of Imperfectivity in Mebengokre

There is a long tradition in the study of imperfective aspect in languages that have distinctive imperfective morphology, such as Slavic and Romance. We investigate the expression of imperfective aspect in Mebengokre (Mb), a Jê language spoken in Central Brazil, and compare it with the more studied languages. We note: (1) Whereas imperfective morphology in Slavic/Romance is capable of expressing a variety of meanings, in Mb distinct particles are responsible for distinct meanings. This indicates that in Mb the flavors of imperfectivity are lexicalized. (2) Mb differs from Slavic/Romance with respect to the syntactic mechanisms that convey aspectual meanings. While in Slavic/Romance aspect is projected as a head in the inflectional structure associated with the verb, in Mb aspectual meanings arise from two distinct sources: a subjectless particle embedding a nominalized clause (‘raising aspect’) or a particle with subject embedding a nominalized clause (‘control aspect’). The distinct syntactic mechanisms correlate with differences in the imperfective meaning, broadening our view of the consequences of the syntax-to-semantics mapping in the domain of aspect. The cross-linguistic picture shows that very different syntactic and semantic components can come together to construct an imperfective interpretation.

Imperfectives in Slavic/Romance. Imperfectives in Slavic/Romance convey a range of meanings, e.g. (1).

(1) Mario iba a Barcelona (Spanish) goPASTIMPF.

(‘Mario was on his way to Barcelona/ had planned to go to Barcelona/usually went to Barcelona’).

We follow [1] in adopting a modal analysis of the imperfective operator (IMPF) according to which variation arises from contextually given Kratzer-style modal bases (MBs) [see [2] for cross-linguistic variation]. We propose (2) [from [2]]:

(2) \[[\text{IMPF}]\] = \(\lambda P \land <s, t> \Rightarrow \lambda s' \forall s: \text{MB}_\alpha (s)(s') = 1, \exists e: P(e)(s') = 1\)

(Where \(P\) is a property of events and \(\text{MB}_\alpha\) is a contextually provided modal base, understood as an accessibility relation). Given (2), IMPF combines with a property of events \(P\) and results in a property of situations true of a situation \(s\) iff in all \(\text{MB}_\alpha\)-accessible \(s'\) there exists a \(P\)-event. Variation in the flavors of IMPF can be accounted in terms of contextually available MBs, e.g.

\(\text{MB}_{\text{ongoing}} = \lambda s. \lambda s'. s' < s\text{(subpart-relation)}, \text{MB}_{\text{generic}} = \lambda s. \lambda s'. s' - s\text{-a-characteristic-situation-in-s.}\)

Imperfectives in Mebengokre. Mb uses aspectual particles for different readings of Slavic/Romance imperfectives, divided into two groups depending on (a) morphosyntactic properties, and (b) logical subjects. Particles in the first group combine with arguments expressed by an ergative/absolutive alignment and do not impose semantic restrictions on logical subjects:

(3) ije tep kren mā

I-ERG fish eat-Nominalized mā (‘I am about to eat fish’) Particles in the second group combine with nominative subjects and impose restrictions on their logical subject, conveying information about their position or motion:

(4) ba tep kren onhy

I-NOM fish eat-Nominalized onhy (‘I am eating fish (sitting down)’) We propose that each Mb particle is lexically specified for a distinct modal flavor (in the spirit of [4] for Salish modals). Mā in (3) for instance is a representative of IMPF that accesses a MB for events with ‘preparatory inertia’ reminiscent of the one for plans in Spanish (and other languages) (see [2]):
(5): \([\text{mã IMPF}] = \lambda_{P_{\langle l, t, s, r \rangle}} s_{s}, \forall \text{MB}_{\text{prep-inertia}}(s)(s')=1, \exists c : P(c)(s')=1. \)

Control vs. Raising aspect. What makes Mb particularly interesting is the difference in clausal morpho-syntax that accompanies the two types of particles. We propose that those patterning like (3) are of the 'raising' type, (6), and those of type (4) are of the 'control' type, (7): particles in the first group do not have a logical subject, while those in the second one do.

(6) **Raising Viewpoint Aspect**
\[\text{ije} \text{[t, tep kren]} \text{mã} \]
1ERG 1ERG fish eat mā
(one logical subject)

(7) **Control Viewpoint Aspect**
\[\text{ba} \text{[PRO, tep kren]} \text{onhy} \]
1NOM 1ERG fish eat sit.with.SG.V (two logical subjects)

In each case, the particle combines with a nominalized clause denoting a property of events [3]. For (7) we propose a Chierchia-inspired analysis of control, where the controlled subject is a variable bound by a lambda abstractor (corresponding to \(i \)) (8), with the denotation of the embedded clause as in (9):

(8) \([[\text{ije, tep kren}]]=\lambda x_{s}, \lambda c_{s}, x_{s} \text{is-an-event-of-x-eating-the-fish-in-s} \)

(9) \([[\text{onhy}]] = \lambda P_{\langle l, t, s, r \rangle} x_{s}, x_{s} \text{is-sitting-down-in-s-and} \forall s_{s}', \text{MB}_{\text{event-inertia}}(s)(s')=1, \exists c : P(x)(c)(s')=1 \)

According to (9) the particle combines with a property of individuals and events (P) and an individual (x). The result is a proposition true of a situation s iff x is sitting down in s and in all situations s' that are event-inertia situations, there exists a P-event (event-inertia=all the events that have actually started in s continue in s' as they would if there were no interruptions). As a particle with its own logical subject, onhy imposes restrictions (via control) on the subject of the embedded clause.

References:

Word count= 744 words

1 This is an informal rendering of a Dowty-Landman style analysis, which faces well-known challenges we ignore for now.