Variability in Intervocalic Stops: Production and Processing

Natasha Warner
and Benjamin V. Tucker
Department of Linguistics, University of Arizona
Speech Variability

- Speech is rampantly variable: segments, syllables, entire words get reduced or deleted (but not always) (cf. many papers by Ernestus et al., Pluymaekers et al. 2005, Johnson 2004, Greenberg 1997)
- Stops can become approximants (vowel-like), vowels can become devoiced (fricative-like)
- Despite all this, we usually understand it all fine!
- How much variability comes from phonology, from systematic phonetic sources, from random variation?
Examples

- What does this say?
- "Do you have time to talk to me for a little while?"

Do you have time…

Complete word "have" deleted
A voiceless stop doesn't have to be voiceless

• "She's very artistic about things" (list reading)
• sentence "tic about..."
A flap example

• Lest you think reduction only happens in casual, connected speech: "capit alist"

Isolated word list reading, in sound booth.
Main interest: flaps in comparison to other intervocalic stops

A clear flap: "treaty"

A reduced one: "status"
Flapping in Amer. English

• /t, d/ are traditionally said to become [ɹ] if intervocalic before unstressed syllables: butter, bottle, treaty, ladder, capitalist, …

• Even across word boundaries: but I, bad as it is…

• This seems to be pretty categorical, although not 100% (Patterson & Connine 2001)

• But there are claims that flapping is not a categorical phonological rule, but phonetic, gradient variability (Fukaya & Byrd 2005)
Phonetics and phonology in flapping

• "The underlying motivation for the phenomenon is a prosodic one that does not pick out a single place of articulation for a symbolic alternation" (Fukaya & Byrd 2005)

• They argue that general prosodic patterns lead to short articulations, which are perceived as a categorically different sound.
Our questions

• Does a categorical phonological rule apply to /t/ and /d/ (and not to /p, k, b, g/)?
• Is some phonetic variability systematic, and conditioned by word frequency, stress and segmental environment, speech style, etc.?
• How common is reduction?
• How do listeners understand reduced forms?
• Do listeners adjust their expectations for sounds based on speech style of the context?
Some things we're not asking

• Most past literature on flaps (Kahn 1976, Patterson & Connine 2005) focuses on whether /t, d/ flap in some environment. We're looking only at flapping environments, to see what happens among flaps.

• Past literature also compares /t, d/ to look for (in)complete neutralization. We compare /t, d/, but not with the purpose of finding differences that tiny.
Methods

• Intervocalic, pre-unstressed /p, t, k, b, d, g/

• 6 segmental environments and 2 stress environments:

Sample stimulus words by stop and stress

<table>
<thead>
<tr>
<th>Post-stress</th>
<th>Inter-unstress</th>
<th>Post-stress</th>
<th>Inter-unstress</th>
</tr>
</thead>
<tbody>
<tr>
<td>/p/</td>
<td>appetite</td>
<td>precipice</td>
<td>/b/</td>
</tr>
<tr>
<td>/t/</td>
<td>status</td>
<td>limited</td>
<td>/d/</td>
</tr>
<tr>
<td>/k/</td>
<td>recognize</td>
<td>applicable</td>
<td>/g/</td>
</tr>
</tbody>
</table>

Sample stimulus words by segmental environment

Before schwa
Before syllabic /l/
Before /ɔ/
Before full vowel /i/
After /r/
Phrasal (Across word boundary)
Materials 2

• 10 items in each of the 6 segmental environments x 6 phonemes x 2 stress environments, where possible within the lexicon

• Several combinations of factors don't (or rarely) occur in the inter-unstressed environment:

quadrupedal [kwa'drupədəl] And our students won't know these words anyway!
synodal ['sɪnədəl]
Subjects & Procedure

22 speakers recorded (7 analyzed so far)

3 speech styles recorded

- open conversation, with friend or family, by phone (in sound booth)
- story reading (targets embedded in stories)
- isolated word list reading
Measurements

- Cons. duration
- Cessation of voicing?
- Whether F2, F3 are visible throughout closure
- Ratio of minimum intensity to average peak intensity of surrounding vowels
- Whether a burst is present

Additional durations not reported here
A surprising acoustic cue: F4

- Primarily around /r/’s
- F4 is hardly used for anything, except retroflexes
- But this is timed to the flap, and occurs even for highly reduced tokens
Results: frequency of reduction

Clearly articulated stops would have bursts, and /p, k/ would be voiceless.

(For all measures except cons. dur., up is more approximant-like, down more stop-like.)
Frequency of reduction: formants

Clearly articulated stops wouldn't have formants.

- Conclusion: There is a lot of reduction in the data, in all speech styles.
Effects of stress environment

• All items are before unstressed syllables, but they can be either post-stress (e.g. 'city') or between unstressed (e.g. 'humanity')

• Result: inter-unstressed environment may be more reduced, but not significantly or consistently
Effects of speech style: deletions

• In 86 out of 4726 stop tokens, the stop is so deleted we can't find any trace of it to measure.

<table>
<thead>
<tr>
<th>Number of tokens</th>
<th>Conversation</th>
<th>Story reading</th>
<th>List reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>deleted</td>
<td>48</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>not deleted</td>
<td>508</td>
<td>833</td>
<td>3299</td>
</tr>
</tbody>
</table>

• Complete deletions are rare (because we can label even highly reduced flaps), but significantly more likely in more casual speech.
Effects of speech style: reduction

• More casual speech is significantly more reduced than careful speech on 3 measures.

• For some measures, there is less style effect for /t, d/, because of ceiling effects.
Effects of phoneme

- /t/ behaves like a voiced stop (similar to /d/)
- /t, d/ are more approximant-like than /b, g/

/t, d/ are similar to each other
Results: Word frequency (4 S’s)

- Frequencies from Celex and British Nat'l Corpus
- High frequency words not more reduced
- Patterson & Connine (2005): freq. effect on whether /t/ flaps

(should be negative) • Patterson & Connine (2005): freq. effect on whether /t/ flaps

(should be positive)
Intermed. summary: production

Is there phonology?

• Since /t/ behaves like a voiced stop, there must at least be a phonological process applying to /t/ (cf. Zue & Laferriere 1979).

➢ Patterson & Connine (2005) show it affects /t/ in almost all cases: close to categorical.

➢ Our results show phonology puts /t/ in a different range from /p, k/: also categorical.

➢ Effects of phoneme are far larger than any other systematic effect in the experiment: categorical, phonological effects may be larger than gradient phonetic ones.
Does phonology affect /d/ too?

• Results show /d/ does not differ from /t/: they are similarly approximant-like on a wide range of measures. /d/ and /t/ both differ from /b/ and /g/.

➢ Therefore, the same (or a similar) phonological process must apply to /d/, too.

➢ It does not apply to any of /p, k, b, g/.

➢ (We didn't measure prec. vowel duration. We show that a phonological process affects /t/ and /d/, not that the result is identical.)
Is this articulatorily based?

• It could just be that the tongue tip can move faster than other articulators, leading to faster gestures and/or gestural overlap, and this is a purely phonetic effect.

• But other languages, and even British English, don't have flapping!

• The phonological aspect could certainly be derived from the articulatory facts, but has to be phonologized: an abstract process.
So is phonology everything?

• No! There is considerable gradient phonetic variability as well.

• Systematic variability: more reduction in casual speech, possibly more reduction for inter-unstressed stops.

• Substantial random variability as well.
Processing/perception

• How does all of this affect the listener?
• Auditory lexical decision and cross-modal identity priming using words produced with reduced vs. unreduced flap and /g/
• Do listeners adjust their expectations of what a stop or flap should sound like based on how casual/reduced the preceding context is?
Processing experiment 1: Auditory lexical decision

- Auditory lexical decision
 Subjects decide if an auditory stimulus is a word or not. RT’s and error rates measured.
- Targets contain a flapped /d/ or a /g/ in similar environment:
 “puddle” “baggy”
- Items are produced either with a reduced, approximant-like flap/stop or a clear flap/stop
- All target /d/’s are flapped: none are unnaturally clear
Sample items for /d/

Unreduced ‘puddle’

Reduced ‘puddle’
Results

Responses are significantly slower and less accurate for reduced targets.
Processing Experiment 2: Lexical Decision in Context

• Recall how much easier it was to understand ‘do you have time’ with some context…

• Same procedure and items as Experiment 1 but with a preceding frame sentence as context.

• Context sentence: “A lot of the time he says ___” in either reduced or careful speech.

• Will listeners adjust their expectations about how sounds should be realized based on the degree of reduction in the preceding speech?
Results: Response Time

- Unreduced targets are significantly easier to recognize.
- This effect is smaller with reduced frame sentences: unreduced targets are not preferred by as much.
Results: Error Rate

- Unreduced targets are significantly easier to recognize.
- /d/ items follow the same pattern as the response times.
- /g/ items are doing the opposite.
Conclusions: processing

- It is easier to recognize clear than reduced words.
- \Rightarrow Clarity of acoustic cues outweighs having heard reduced forms more often in natural speech.
- Listeners adjust how they expect a phoneme to be realized based on reduction of preceding context: the preference for unreduced speech isn’t as strong after hearing reduced speech in the context.
Conclusions: summary

• Intervocalic stops demonstrate a categorical, phonological, abstract effect on /t, d/ (flapping), as well as both systematic and random phonetic variability.
• Casual speech is more reduced than formal. Stress environment has limited effects.
• We understand each other despite a great deal of several types of variability, but we do understand clear speech more easily.
• Listeners adjust expectations based on the speech style of preceding context.
Effects of segmental environment

• Examined in word list reading, post-stress conditions only (full factorial design)

• Phoneme and segmental environment interact for most measures, but inconsistently

• Two interesting patterns:

 ➢ Stops appear to reduce less or differently before /i/ than elsewhere (because /i/ is peripheral?)

 ➢ /b, g/ appear to reduce less before [l] than elsewhere, while /t, d/ do not (shared pl. artic.)
Effects of segmental environment

- Pre-i less reduced than pre-schwa for 4/6 measures
- Pre-l vs. pre-schwa only interacts significantly with phoneme for this measure
Method: Sample items /g/

Unreduced ‘baggy’

Reduced ‘baggy’