Scottish Gaelic Text-to-Speech Synthesis

Jeff Berry

Student Showcase
March 7, 2008
Approaches to Speech Synthesis

Scottish Gaelic Text-to-Speech

Rule-based Synthesis
- Diphone Synthesis
- Unit Selection Synthesis
- HMM-based Synthesis
- Demos

Approaches to Synthesis

Rule-based Synthesis
- Formant Synthesis
- Articulatory Synthesis
Approaches to Synthesis

Rule-based Synthesis

- Formant Synthesis
- Articulatory Synthesis

Concatenative Synthesis

- Diphone Synthesis
- Unit Selection Synthesis
- HMM-based Synthesis
Diphone Synthesis

A cut-and-paste approach
Diphone Synthesis

A cut-and-paste approach
Diphone Synthesis – Pros & Cons

Pros

- More natural sounding than rule-based synthesis
- Small diphone database – easy to store
- Not difficult to make new voices
Diphone Synthesis – Pros & Cons

Pros
- More natural sounding than rule-based synthesis
- Small diphone database – easy to store
- Not difficult to make new voices

Cons
- Still not very natural sounding
- Not flexible
Unit Selection Synthesis

- Based on a large database of a single speaker
- Units can include words, syllables, demisyllables, phonemes
- Text input is converted into a set of targets
- Units are selected based on their similarity to the targets:

Target cost between candidate unit u and intended output t

$$C^t(t_i, u_i) = \sum_{j=1}^{p} w^t_j C^t_j(t_i, u_i)$$

Concatenation cost

$$C^c(u_{i-1}, u_i) = \sum_{k=1}^{q} w^c_k C^c_k(u_{i-1}, u_i)$$
Unit Selection Synthesis

Diagram showing the process of unit selection synthesis, with red arrows indicating target cost and blue arrows indicating concatenation cost.
Unit Selection Synthesis – Pros & Cons

Pros

- Most natural sounding because of less signal processing
- Nearly perfect performance on limited domains
- Widely used
Unit Selection Synthesis – Pros & Cons

Pros
- Most natural sounding because of less signal processing
- Nearly perfect performance on limited domains
- Widely used

Cons
- Requires large databases – 10+ hours of recorded, labelled speech
- Expensive
HMM-based Synthesis

Overview of a HMM-based system (Black et al. 2007)
HMM-based Synthesis – Pros & Cons

Pros

- Once trained, has a very small footprint
- Training data does not have to be as large as Unit Selection
- Versatility – easy to change the quality of the voice
- Should be easily adaptable to other languages
HMM-based Synthesis – Pros & Cons

Pros
- Once trained, has a very small footprint
- Training data does not have to be as large as Unit Selection
- Versatility – easy to change the quality of the voice
- Should be easily adaptable to other languages

Cons
- Does not have the same quality as Unit selection
- Still being developed
Online demos for all three concatenative approaches using the same voices:
http://www.cstr.ed.ac.uk/projects/festival/morevoices.html
SG is the focus of an ongoing project here at UA to document the language.

- SG is severely endangered, with no monolingual speakers.
- SG has many interesting grammatical properties.
Phonology

- SG has 9 vowels, 10 diphthongs, 32 consonants (Gillies 1992)
- SG has phonetics settings at the syllable level or higher:
 - neutral
 - palatalized
 - velarized
 - nasalized
- Variation among dialects

Question: How many diphones do we need?
Previous Attempts

- Murray & Black 1993 for SG – built out of English sounds
- Williams 1994 for Welsh – 2800 diphones
- Wolters 1997 for Bayble dialect of SG – about 900 diphones

Phase 1: uses Wolters diphone set
Building the Voice

Recording

- Native speaker read a list of 500 Gaelic words
- We couldn’t use nonwords because of possible influence of English
- Use EGG for pitchmarking
Building the Voice

Recording
- Native speaker read a list of 500 Gaelic words
- We couldn’t use nonwords because of possible influence of English
- Use EGG for pitchmarking

Labelling
- Each word must be labelled
- Hand labelling is labor intensive
- Use hand labelled samples to train HMMs for automatic labelling
Building the Voice

Festvox

- Festvox uses labels and EGG pitchmarks to create diphone database
- Dictionary must be created to perform grapheme to phoneme conversion along with a machine readable phonetic alphabet:

 \[
 \begin{align*}
 &\text{(lex.add.entry '("glaschu" nn (((g l a s) 1) ((x ub) 0))))} \\
 &\text{(lex.add.entry '("gainne" nn (((g a) 1) ((nj E)0))))} \\
 &\text{(lex.add.entry '("thraigh" nn (((thr a G) 1)))))} \\
 &\text{(lex.add.entry '("thu" nn (((h uub) 1))))} \\
 \end{align*}
 \]
 ...

- A set of LTS rules must be constructed to handle words not in the dictionary
Prototype of Phase 1 can be found at:
http://yllab.dyndns.org/~group2

I’m still in the process of finishing the labelling task, so this only says a few words:

<table>
<thead>
<tr>
<th>gainne</th>
<th>thraighe</th>
</tr>
</thead>
<tbody>
<tr>
<td>thu</td>
<td>thubhairt</td>
</tr>
<tr>
<td>thuirt</td>
<td>tim</td>
</tr>
<tr>
<td>tighinn</td>
<td>tilg</td>
</tr>
<tr>
<td>tilleadh</td>
<td>timcheall</td>
</tr>
<tr>
<td>tinn</td>
<td></td>
</tr>
</tbody>
</table>

These words illustrate some issues with the orthography.
Current work

Phase 2 Diphone

- Make new recordings of a speaker from Skye
- The Phase 1 synthesizer will be used to generate prompts for the new recordings – these can be nonsense words
- Revised diphone set
- The new system will have better sound quality, faster to build

HMM-based

- Record a set of sentences to train an HMM-based system using the HTS extension for the HTK software package
Thank You!

References available upon request jjberry@email.arizona.edu